
A NON-DIMENSIONAL FE MODEL FOR THE SIMULATION 

OF HEAT CONDUCTION IN CONCRETE 
 

 

Sneha Das1, Kaustav Sarkar1  

 

1. School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 

India 

 

 

  

 

 

 

 

 

ABSTRACT.  The simulation of heat conduction in concrete is fundamental to the 

assessment of the long-term performance of structural elements under the conditions of 

service. The phenomenon is conventionally described using a partial parabolic differential 

equation with thermal diffusivity as the transport parameter. Under ambient conditions, the 

thermal diffusivity value for concrete remains practically constant and hence the governing 

model is often taken to be linear. This study develops a non-dimensional form of the model to 

achieve computational efficiency and stability. The developed model subjected to constant 

temperature boundary conditions, has been subsequently analysed with a one-dimensional FE 

scheme based on a lumped mass matrix model developed through Galerkin’s technique. The 

algorithm has been implemented through a C++ programme to simulate the evolution of 

temperature distribution in a dry concrete medium with siliceous aggregates. The effect of 

different thermal gradients (60-25, 40-25, 20-25, and 0-25°C) on the attainment of steady 

state over a medium length of 0.1 m has been evaluated. The comparison of the simulated 

steady state temperature profiles against standard analytical solution verifies the reliability of 

the developed scheme.  
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INTRODUCTION 
 

The long-term performance of concrete structures is affected by the conditions of exposure to 

which they are subjected. The primary environmental factors that influence their performance 

are temperature, rainfall, relative humidity and wind speed. Quantification of the effects of 

these factors enables effective design of concrete structures for mechanical loading as well as 

endurance against environmental actions. The phenomena that degrades the durability of 

structural elements are often affected by the temperature outside as well as the temperature 

distribution within them [1,2,3], thus making the study of heat transfer an important facet in 

durability design of concrete. The study of heat transfer in structures and structural elements 

also serves many other purposes such as estimation of thermal stresses [4], determination of 

thermal comfort of buildings, design of HVAC system, and building energy consumption 

analysis [5]. Therefore, it is significant to study heat transfer in concrete structures and 

structural elements. 
 

Heat transfer in a structural element can be defined as the flow of energy from high 

temperature region to low temperature region by one or more of the three modes: radiation, 

convection and conduction. Heat transfer at the surface takes place by convection and 

radiation after which heat flows within the element by conduction. Heat conduction in 

concrete depends upon its thermal conductivity and thermal capacity, both of which are 

strongly affected by the type of aggregates used [6]. Their dependence on aggregate type has 

been studied by many researchers and standard equations are available quantifying their 

dependence [7]. Apart from the type of aggregate used, the state of saturation of concrete and 

temperature are other factors that influences the rate of heat conduction in concrete [6,7,8]. 

Not only does moisture content influences the temperature distribution, but the presence of 

thermal gradient also affect the moisture distribution in concrete. Steeper temperature 

gradient stimulates greater effect on the moisture distribution [9]. Therefore, heat and 

moisture transfer in concrete can be regarded as a coupled phenomenon. The modelling of 

heat conduction in concrete to determine the temperature distribution will help in effective 

determination of moisture distribution, which will further aide towards efficient durability 

design of concrete structures. Over the relatively small range of temperature encountered in 

concrete structures during a year, it is usually adequate to assume that the thermal 

conductivity and thermal capacity are constant [10]. Thus, the governing equation for heat 

conduction in concrete is often taken as linear. 

This study adopts a numerical approach towards the determination of temperature distribution 

in concrete. Numerical approach provides the flexibility of using different types of boundary 

conditions and different shape and size of the domain. The present study develops an FE 

model using Galerkin’s weighted residual method for the solution of one-dimensional 

transient heat conduction in concrete adopting non-dimensional parameters and a lumped 

mass scheme. The use of non-dimensional parameters reduces the range of orders involved 

and hence minimizes the errors inherent in numerical computation. Since the errors in 

computation are also a result of the characteristics of the matrices involved, the 

implementation of a lumped mass scheme offers stable convergence and consistent result 

[11]. The FE scheme is implemented by developing a C++ programme for the simulation of 

temperature profiles within the considered domain. The developed numerical scheme is 

subjected to four different constant temperature boundary conditions. Further, the time 

required by each of the gradient to attain steady state is recorded and the temperature profile 

at that time is compared to the standard analytical solutions available for the problem. The 



comparison of the simulated solution with the benchmark solution shows good convergence 

thus verifying the applicability of the developed FE scheme and C++ code for similar studies. 

 

 

MODELLING OF HEAT TRANSFER IN CONCRETE 

 

Governing Equation 

 

The heat conduction equation is derived from Fourier’s law and the law of conservation of 

energy. It can be stated as: 
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The equation is a parabolic partial differential equation which is first order in time and 

second order in space. Thus, the solution of the governing equation requires an initial 

condition and two boundary conditions as input. Boundary conditions may either be specified 

as constant temperature value (Dirichlet/Essential boundary condition) or as heat flux 

(Neumann/Natural boundary condition). 
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Where, 𝑇(°𝐶) is temperature, 𝑥(𝑚) is the spatial distance), 𝑡(𝑠) is time and 𝐷𝑇 (𝑚2 𝑠⁄ ) is the 

heat transport parameter known as thermal diffusivity. 𝑇1 (
oC) and 𝑇2 (oC) are the temperature 

at the two extreme boundaries, 𝑇𝑖𝑛𝑖(°𝐶) is the initial temperature, 𝐿(𝑚)  is the length of the 

domain and q(W/m2) is the heat flux.  

 

Thermal diffusivity is the transport parameter determining heat conduction in concrete. It is 

the ratio of thermal conductivity and thermal capacity. There are many studies oriented 

towards the determination of factors that influence the thermal conductivity and thermal 

capacity of concrete. Thermal conductivity is said to depend upon the mix proportioning, 

aggregate type, moisture status and unit weight of concrete in dry state [12,13]. Kim et al [14] 

experimentally studied the effect of various factors like age, volume of aggregate, water-

cement ratio, temperature, moisture condition, admixtures, and fine aggregate fraction. They 

further developed a model including only those parameters which significantly affected the 

thermal conductivity of concrete. Also, there are models available in the literature to predict 

effective thermal conductivity of three phase mixtures like concrete such as the Krischer and 

Kroll model which is widely used for three phase system [15,16] and the Chaudhary and 

Bhandari model [17] which relates thermal conductivity to porosity and moisture content. 

The thermal conductivity (KT) and thermal capacity (CT) of concrete depends extensively on 

the type of coarse aggregate [7]. Table 1 and 2 summarizes the dependency of thermal 

conductivity and thermal capacity on types of aggregate and temperature for dry concrete [7]. 



Table 1   Dependence of thermal conductivity on aggregate type and temperature 

 

AGGREGATE TYPE TEMPERATURE RANGE 

 (°C) 
KT 

(𝑊𝑚−1 °𝐶−1) 

Siliceous aggregate 0 - 800 (−0.00062𝑇 + 1.5) 

Carbonate aggregate 
0 – 293 1.355 

Greater than 293 (−0.00124𝑇 + 1.7162) 

Expanded shale aggregate 0-600 (−0.0003958𝑇 + 0.0925 

 

 

Table 2   Dependence of thermal capacity on aggregate type and temperature  

 

AGGREGATE TYPE TEMPERATURE RANGE 

 (°C) 
CT 

(𝐽𝑚−3 °𝐶−1) 

Siliceous aggregate 0 – 200 (0.005𝑇 + 1.7) × 106 

Carbonate aggregate 
0 – 400 2.566 × 106 

401 – 410 (0.1765𝑇 − 68.034) × 106 

Expanded Shale aggregate 
0 – 400 (1.930 × 106) 

401 – 420 (0.0772𝑇 − 28.95) × 106 

 

The variation of thermal diffusivity in concrete within ambient temperature conditions is not 

very significant, therefore, thermal diffusivity is mostly taken as constant in the heat 

conduction analysis of concrete.  

 

Non-Dimensional Representation 

 

For implementation of the numerical scheme, the independent variables in equation (1a) are 

expressed in dimensionless terms in order to reduce the range of orders involved and 

minimize computational errors [18]. The following reduced variables are adopted for the 

formulation of the non-dimensional governing equation: 
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  Restating equation (1a) in non-dimensional terms gives: 
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Where, 𝑇𝑚𝑖𝑛 (°𝐶) and  𝑇𝑚𝑎𝑥 (°𝐶) are the minimum and maximum temperature respectively. 

The scrutiny of the final reduced governing equation shows that the thermal diffusivity term 



which is of the order of 10−7 does not appear in the equation, thus reducing the range of 

order and minimizing the errors involved in numerical computation. This justifies the non-

dimensionalization of the governing equation. 

 

Formulation of Element-Level Governing Equation 

 

The FE formulation of the reduced governing equation is carried out by applying Galerkin’s 

weighted residual method on equation (3). The method involves multiplying the differential 

equation with weight function and then subsequently solving to obtain a weak form of the 

differential equation. The weighted residual statement for equation (3) is obtained as: 
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Where, 𝑤𝑘 is the weight function, and 𝑙 is the reduced element length in FE analysis.  

 

Integrating equation (4a) by parts gives: 
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Considering linear elements with two nodes the interpolation function can be written as: 
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Where, [𝐻] is the interpolation matrix {𝑑𝑒} is the vector representing elemental degrees of 

freedom and [𝐵] is the gradient matrix. The weight functions in equation (4b) are now 

substituted as interpolation functions. 
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  in equation (4b) gives: 
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The general element level governing equation is obtained by combining equation (6a) and 

(6b), and can be stated as: 
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The element level semi-discrete governing equation can also be represented as: 

 

        e em d k d q   (8a) 

 

Where, [𝑚] and [𝑘] are element level mass matrix and diffusivity matrix respectively. {𝑑𝑒} is 

the vector representing nodal temperature values and {𝑞} is the vector of nodal fluxes. 

Equation (8a) represents a semi-discrete form of the finite element formulation. In order to 

obtain a fully discretized scheme, equation (8a) needs to be solved further using finite 

difference method. In this study, Crank–Nicolson scheme has been used for complete 

discretization of the semi-discrete equation. Finally, the fully discretized scheme is states as: 

 

                 1 1
0.5 0.5 0.5

n n n n

r e r e rm t k d m t k d t q q
 

         (8b) 

 

The element level fully discretized scheme can be assembled to form a global equation which 

can be represented in [𝐴]{𝑋} = {𝑏} form where: 
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Where, [𝑀] and [𝐾] are global mass and diffusivity matrix respectively, {𝑋} represents the 

global degree of freedom and {𝑄} is the global vector for nodal fluxes. 

 

Formulation of Global Matrices 

 

Consistent matrices 

 

For the element level governing equation, the global matrices will be tridiagonal in nature 

and can be presented as: 
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Where, 𝑚 is the order of the matrices which is equal to the total number of unknowns. 

𝑀𝑖𝑗  𝑎𝑛𝑑 𝐾𝑖𝑗 are global consistent mass matrix and diffusivity matrix respectively. 𝑖 is the row 

index and 𝑗 is the column index. 

 

Lumped mass matrix 
 

The convergence of the numerical solution of a partial differential equation and the accuracy 

of its results depends upon the characteristics of the matrices involved in computation along 

with the space and time discretization. The spatial oscillations in the results occur due to the 

characteristics of the [𝐴] matrix which comprises of the mass matrix and the diffusivity 

matrix. Neuman [19] used a central difference time stepping scheme on a parabolic partial 

differential equation and concluded that it is necessary to use a lumped mass matrix in order 

to achieve convergence and a stable solution especially in the case of unsaturated flow. Also, 

the adoption of lumped mass matrix occupies less storage space and therefore finer spatial 

discretization can be used. Ju et al [11] obtained FE solution for similar parabolic partial 

differential equation as the heat conduction equation with different types of elements for 

consistent and lumped mass matrix to draw a comparison. He found that while using a 

lumped mass scheme one can arbitrarily reduce the time step size at any time during the 

simulation to obtain a stable and convergent solution without changing the mesh structure. 

Also, he concluded that there is a significant difference in memory occupied and time 

required to simulate while using the consistent and lumped mass matrix with the latter 

ensuring faster computation and less storage occupancy. Sarkar et al [18] also concluded that 

the oscillations in the FE solution can be counteracted by forming diagonally dominant 

matrix. Additionally, the final [𝐴] matrix should not produce any negative element on the 

main diagonal. These constraints can be addressed by replacing the consistent mass matrix 

with lumped mass matrix. The constitution of the final lumped mass matrix is given in 

equation (11): 
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Here, 𝑀𝑖𝑗
𝐿  represents the global lumped mass matrix. 

 

 

 

 

 

 

 



SIMULATION OF HEAT CONDUCTION IN CONCRETE 
 

Properties of the Physical Domain and Implementation of Numerical Scheme 

 

For implementation of the numerical scheme, a case of dry concrete with siliceous coarse 

aggregate has been selected. The thermal diffusivity parameter for siliceous aggregate dry 

concrete can be computed as [7]: 
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The variation of the thermal diffusivity parameter for the temperature range adopted in this 

study (0° 𝐶 − 60°𝐶) is not very significant. The coefficient of variation is 5.4%. Therefore, 

the thermal diffusivity is considered to have a constant value, which is the value of thermal 

diffusivity at 30°𝐶. A C++ programme was developed to facilitate the simulation of 

temperature distribution for four different temperature gradients (60 − 25°𝐶;  0 −
25°𝐶;  40 − 25°𝐶;  20 − 25°𝐶) within the considered domain. In order to select a suitable 

mesh size, 1-hour simulation was carried out with increasing number of nodes. The reduced 

time step size adopted for this simulation is such that 2( 3)rt l   to ensure minimization of 

numerical oscillation [9]. Table 3 summarizes the parameters used for the simulation and 

Figure 1 shows 

the variation of 1-hour temperature profile with number of nodes for two extreme gradients 

(60 − 25𝑜𝐶 𝑎𝑛𝑑 0 − 25𝑜𝐶). 
 

Table 3   Data of parameters used in simulation 

 

PARAMETER VALUE 

 𝐷𝑇(𝑚2 𝑠⁄ ) 8.0278 × 10-7   

 𝐿 (𝑚) 0.1  

𝑇𝑚𝑎𝑥(°𝐶) 60  

𝑇𝑚𝑖𝑛(°𝐶) 0  

 

a) b) 

  
 

Figure 1   Variation of 1-hour temperature profile with number of nodes (𝑎) 60 −
25°𝐶 (𝑏) 0 − 25°𝐶 



Based on the mesh convergence study it can be concluded that normalized element length (𝑙) 

equal to 0.005 (201 nodes) can be adopted for subsequent simulations as the temperature 

profile ceases to change with increase in number of elements beyond 200.  

 

The reduced time step Δ𝑡𝑟 is adopted such that Δ𝑡𝑟 = 0.99 𝑙2. This is done in order to 

achieve stable convergence and minimize numerical oscillations in the simulated profiles. 

Figure 2 shows the oscillations that are produced in the results when Δ𝑡𝑟 = 1.01 𝑙2 and the 

elimination of oscillation when Δ𝑡𝑟 = 0.99𝑙2 respectively. 

 

 

 a)  

  
 

b)  

  
 

Figure 2   Effect of time step size on numerical stability for 200 elements for 60-

25° 𝑎𝑛𝑑 0-25°C when a) Δ𝑡𝑟 = 1.01𝑙2 𝑎𝑛𝑑 𝑏) Δ𝑡𝑟 = 0.99𝑙2 

 

Thus, it is evident from Figure 2 that violation of the condition (Δ𝑡𝑟 < 𝑙2) leads to significant 

oscillation in the simulated results. For the purpose of this study, the reduced time step is 

such that Δ𝑡𝑟 = 0.99 𝑙2. Figure 3 represents the algorithm adopted for implementation of the 

FE scheme. Table 4 summarizes the results of the simulation and the time taken by each of 

the four gradients to attain steady state and Figure 4 shows the evolution of temperature 

profile for each gradient till steady state. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3   Algorithm for FE analysis of heat conduction in concrete 
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Table 4   Comparison of simulated parameters for different gradients 

 

GRADIENT 
NO. OF TIME-STEPS 

COMPUTED 

TIME TAKEN FOR 

STEADY STATE (sec) 

60 – 25 °C 30121 9271 

0 – 25 °C 28110 8404 

40 – 25 °C 26103 7804 

20 – 25 °C 22089 6303 

 
 
 

  
 

 

 

 
 

Figure 4   Temperature profile evolution till steady state for all gradients 
 

 

Convergence and Verification of Numerical Scheme 

 

The analytical solution for linear heat conduction problem for two different constant 

temperature boundary conditions is stated as [20]:  
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(13) 

 

Where, 1( )T C  and 2 ( )T C  are temperature at the two extreme boundaries and ( )oT C is the 

initial condition.  

 

The time taken by each of the simulated gradient to attain steady state is recorded, and the 

analytical solution to the governing equation is obtained by substituting the steady state time 

as input in equation (13). The difference between the simulated solution and benchmark 

solution is very less and the convergence achieved is good. Table 5 summarizes the error 

obtained in nodal values with respect to benchmark solution. 

 

Table 5   Error in simulated nodal values with respect to benchmark solution at steady state 

 

GRADIENT 

AVERAGE ABSOLUTE 

PERCENTAGE 

DIFFERENCE  

(%) 

ROOT MEAN 

SQUARE ERROR 

60 – 25 °C 0.45   0.004107 

0 – 25 °C 0.42            0.003937 

40 – 25 °C 0.41  0.002762 

20 – 25 °C 0.16  0.000718 

  

 

CONCLUDING REMARKS 
 

An assessment of the hygrothermal performance of structural concrete requires the modelling 

of heat and mass transfer processes. The modelling and simulation of these processes has 

remained an active area of research over the past several decades. The present study caters to 

the need of having insights into the algorithm of FE simulation of heat conduction in concrete 

by experimenting with a modified model stated using non-dimensional space, time and 

temperature variables and the associated time stepping scheme to ensure stable convergence. 

Robust application of FE simulation requires the implementation of various conditions as 

stated below: 

 

1. The use of non-dimensional variables aides to reduce the range of orders involved thereby 

minimizing the computational errors and producing reliable results.  

 

2. The occurrence of numerical instability is an inherent characteristic of the matrices 

involved in computation. Numerical oscillations can be minimized by adopting a lumped 

mass matrix and a suitable time stepping criteria. For the non- dimensional model formulated 

in this study, it is observed that adopting Δ𝑡𝑟 < 𝑙2 ensures smooth convergence. 

 



3. The efficiency of the numerical scheme and the algorithm proposed in this study have been 

verified by comparing the simulated results with standard analytical solution. The comparison 

shows good match between the two results. 

 

4. Although this work is limited to the simulation of heat conduction in concrete as a linear 

phenomenon, the identified concepts can be extended to the cases of non-linear transport 

processes, such as that of moisture movement in porous media.  
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