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ABSTRACT.  Lateral torsional buckling is considered as an ultimate limit state related to 

member buckling resistance. The buckling resistance is obtained by using a reduction factor. 

This reduction factor is the function of two other parameters, viz. the imperfection factor and 

the non-dimensional slenderness. The imperfection factor related parameter takes into 

account the initial member imperfection, residual stresses and other nonlinear effects. The 

non-dimensional slenderness depends upon the elastic critical moment (Mcr) for lateral 

torsional buckling. Mcr can be calculated as per IS 800 (2007) (Annex-E, Clause 8.2.2.1). A 

comparative study between the values of Mcr and Md (design bending strength) considering 

IS 800 (2007) code and AISC (1989) code is performed in the present paper. It indicates that 

the values of Mcr and Md as per IS code are on the conservative side, as compared to the 

AISC code. It is therefore observed that there is a need for development of design formulae 

for tapered structural members in IS 800 (2007), considering the effect of web tapering ratio 

on the lateral torsional buckling of web tapered I-beams. Hence, it is essential to find out a 

factor in the Mcr equation, which will consider the interactions of the above parameters. The 

influence of the taper ratio on the critical load of web-tapered I-beams is seen to be very 

significant and must be taken into account when designing such members against buckling. 
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INTRODUCTION 
 

The flexural capacity of beams with large unbraced lengths i.e. unrestrained beams is often 

limited by the mode of failure, known as Lateral Torsional Buckling (LTB). A beam is 

considered to be unrestrained when its compression flange is free to displace laterally and 

rotate. When an applied load causes both - lateral displacement and twisting of a member, 

lateral torsional buckling will occur. Figure 1 shows the lateral displacement and twisting 

experienced by a beam when LTB occurs. The applied vertical load results in compression 

and tension in the section flanges. The compression flange tries to deflect laterally away from 

its original position; whereas the tension flange tries to keep the member straight. The lateral 

bending of the section creates restoring forces that oppose the movement, because the 

tendency of the section is to remain straight. These restoring forces are not large enough to 

prevent the section from deflecting laterally, but together with the lateral component of the 

tensile forces, they determine the buckling resistance of the beam. 

 

 

 

Figure 1   Lateral Displacement and Twisting (NSC 2006) [3] 

 

In addition to the lateral movement of the section, the forces within the flanges cause the 

section to twist about its longitudinal axis. The twisting is resisted by the torsional stiffness of 

the section, which is dominated by the flange thickness. That is why a section with thicker 

flanges has a larger bending strength than that of the same depth section, with thinner flanges. 

LTB can be avoided by properly spaced and designed lateral bracings. The other factors 

affecting LTB are the proportions of beam cross sectional dimensions, material properties 

such as modulus of elasticity and shear modulus, length of the beam, section slenderness, 

support conditions, initial geometry imperfections, and the type and application of loading.  

 

The effect of a destabilizing load is considered by the use of effective length given in Table 

15 of IS 800 (2007), where the effective lengths are longer for destabilizing loads, as 

compared to those of the non-destabilizing loads. Factors C1, C2 and C3 are included to allow 

for the effect of different bending moment distributions and end restrained conditions. 

 

In practice, beams are laterally braced in a variety of ways, in order to increase their buckling 

strength. Determining the brace force requirements for a system generally requires a large 

displacement analysis of an imperfect system. Most bracing studies usually focus on 

determining the maximum brace forces that are likely to occur in typical applications. This is 

particularly true for beam bracing in which the brace location and distribution of the loading 

can have a significant effect on the brace forces (Gill and Yura 1999) [4]. 

 

Over the past three decades, construction of buildings with frames comprising of web-tapered 

I-beams, manufactured from high tensile steel has become a standard practice. Their cross-



sectional profiles are intended to match the flexural strength close to the bending moment 

diagram, so that the requirement of the cross sections is well optimized. Despite several 

advantages of tapered structural members, they lack the appropriate simple and accurate 

design formulae in most of the codes of practice. The design solutions for tapered structural 

members are limited, because the available approaches consist of elastic design formulae, 

where taper effects are not properly accounted for. The stability of loaded tapered rafters was 

investigated by earlier researchers with proposals to design tapered rafters as uniform 

prismatic members, using additional factors.  

 

Mcr can be calculated as per IS 800 (2007) Annex-E, Clause 8.2.2.1.  Here, C1, C2 and C3 

factors depend upon the loading and end restrained conditions. When the loading is not due to 

a single central point load or due to full-length uniformly distributed load (udl), the published 

values IS 800 for C1 and C3 may be inaccurate and in some cases non-conservative. In 

addition, the C3 factor is only required for asymmetric sections. A comparative study as 

shown in Table 1 between the values of Mcr and Md considering IS 800 (2007) code and 

AISC code indicates that the values of Mcr and Md as per IS code are on the conservative side 

as compared to the AISC code.  

 

It is therefore observed that there is a strong need for the development of design formulae in 

IS 800 (2007), for tapered structural members, considering the effect of geometric 

imperfections, effect of transverse loading applied at different heights with respect to the 

mid-height of the cross section and; effect of web tapering ratio, on the LTB of web tapered 

beams. Hence, it is essential to find out a factor in the Mcr equation, which will consider the 

interactions of these parameters. With the inclusion of this factor, it will be ensured that the 

material is used to its fullest capacity by optimizing the steel quantity, considering all the 

influencing parameters and thus reducing the steel consumption and saving the natural 

resources for future. 

 

 

REVIEW OF BEAM DESIGN AS PER IS 800 (2007) SPECIFICATIONS 
 

Lateral torsional buckling is considered as an ultimate limit state related to the member 

buckling resistance. The buckling resistance is obtained by multiplying the resistance of the 

cross section by a reduction factor . This reduction factor is the function of two other 

parameters; the imperfection factor αLT and the non-dimensional slenderness LT. The 

parameter αLT takes into account the initial member imperfection, residual stresses and other 

nonlinear effects. The non-dimensional slenderness 𝜆LT depends upon the elastic critical 

moments for lateral torsional buckling. 

The elastic critical moment may be calculated from Equation (1) of Eurocode 3, derived from 

the buckling theory: 

 

            Mcr =C1   - }                   

(1) 

 

 

 



Table 1   Values of Mcr and Md using IS 800 (2007) and AISC code 

 

Member 

Description 

Member 

Size 

(mm) 

Section 

type 

IS 800 (2007) 

Clause 8.2.2.1 

IS 800(2007)  

ANNEX-E 
AISC-LRFD 

Mcr 

(kNm) 

Md 

(kNm) 

Mcr 

(kNm) 

Md 

(kNm) 

Section  

type 

Mcr 

(kNm) 

Md 

(kNm) 

Web  

(dw × tw)  
152.4 × 2.54 Plastic 

6.64 4.98 6.36 4.80 

Compact 

6.64 5.97 
Flange  

(bf × tf)    
101.6 × 6.35 Compact Compact 

Web  

(dw × tw)   

152.4 ×  

2.54 
Plastic 

81.68 32.57 63.06 29.04 

Compact 

49.17 44.25 
Flange  

(bf × tf)    
304.8 × 6.35 Slender Slender 

Web  

(dw × tw)   
152.4 × 6.35 Plastic 

56.24 36.23 55.92 36.07 

Compact 

56.27 50.64 
Flange  

(bf × tf)    

101.6 × 

19.05 
Plastic Compact 

Web  

(dw × tw)   
152.4 × 2.54 Plastic 

531.86 207.93 504.73 203.69 

Compact 

308.27 277.44 
Flange  

(bf × tf)    

304.8 × 

19.05 
Compact Compact 

Web  

(dw × tw)  
304.8 × 2.54 Slender 

20.43 15.17 15.98 12.17 

Non 

compact 
20.43 18.38 

Flange  

(bf × tf)    
152.4 × 6.35 Slender 

Non 

compact 

 

 

In Equation (1), L is the beam length between points which have lateral restraint. For simply 

supported beams with intermediate lateral restraint, the effective length LLT, as per the code is 

1.2 times the length of the relevant segment in between the lateral restraints. This is how the 

code takes into account the destabilizing effect of the top flange loading. yg is the distance 

between the points of load application and the shear centre. 

 

When a beam buckles and twists, the displacement of the flanges, combined with the 

longitudinal bending stresses (compression and tension) set up a torque. The term yj 

represents the coordinate of the centre about which the two torques rotate. This leads to yj 

equal to zero for symmetric sections. For asymmetric sections yj will be positive when the 

larger flange is in compression and negative when the smaller flange is in compression. K 

and Kw are effective length factors of the unsupported length accounting for boundary 

conditions at the end lateral supports. The effective length factors K and Kw vary from 0.5 for 

full fixity (against warping) to 1.0 for free (to warp) case and; 0.7 for the case of one end 

fixed and the other end free.  

 

C1 is equivalent uniform moment factor and; C2 and C3 are the factors which depend upon the 

loading and end restrained conditions. The values of C1, C2 and C3 are given in the Table 42 

of IS 800 (2007). The factors C1 and C3 are little trickier, as they are not deterministic and 

most of them are quoted as values, formulae or graphs. When the loading is not due to a 



single central point load or due to a full length udl, the published values of IS 800 (2007) for 

C1 and C3 can be inaccurate and in some cases non-conservative. Also the C3 factor is 

required only for asymmetric sections. 

 

 

NUMERICAL SIMULATIONS 
 

In this paper, the effect of taper ratio and cross-sectional geometry on the stability of steel 

members that are subjected to bending is investigated. The effect of shear forces is 

considered negligible. The problem is studied by focusing on web-tapered I-beams with built-

up cross-sections that are usually required in majority of the steel structures. The beams are 

considered simply supported in bending, while other boundary conditions can be easily dealt, 

with the approach proposed herein 

 

Nonlinear Finite Element Modeling  

  

To investigate the lateral torsional buckling of beams, nonlinear finite element analysis is 

performed using the commercial software package, ANSYS R18.  

  

Material Properties   
 

The properties of steel considered are: Young’s modulus (E) = 2×105 MPa and Poisson’s 

ratio (υ) = 0.3.  

 

Geometric Nonlinearities 

 

Due to large deformations, the changing geometric configuration can cause the structure to 

respond nonlinearly. Hence geometric nonlinearity is considered in the current scenario. 

 

Finite Element Type and Mesh 

   

A four-node structural shell element (SHELL181) from ANSYS R18 library has been used in 

the nonlinear finite element analysis, to investigate the lateral torsional buckling. The element 

has six degrees of freedom at each node; 3 translations in the x, y and z directions and 3 

rotations about the x, y and z axis. The element is suitable for large rotation, large strain 

nonlinear application and load stiffness effect of distributed pressures. The performance of 

nonlinear buckling finite element convergence shows that the element mesh size of 25 mm 

(shown in Figure 2) is suitable and sufficient to apply in this investigation.  

 

 

 

Figure 2   Shell Element Mesh Pattern 

 



 

Boundary Conditions and Load Application   

 

In order to find the effect of tapering ratio of tapered I-shaped beams on the buckling 

analysis, loading and restraint conditions for single span tapered I-beams is considered. Point 

load is applied at the centre of the beam. Two typical symmetric tapered beams are 

considered in the study. The cross-sectional dimensions at the small end are given in Table 2. 

The two sections are identical to the sections originally used by Lee et al. (1972) [5] and M. 

L. Morrell & Lee (1974) [6]. The beam end conditions considered are both ends pinned.  

 

 

Table 2   Section Dimensions 

 

Dimension 

(mm) 
Section- I Section- II 

d0   152.4 152.4 

b   101.6 101.6 

tf    6.35 19.05 

tw   2.54 6.35 

 

 

Four different lengths of beam viz. 1.735 m, 2.275 m, 2.850 m and 3.415 m are considered in 

each case. Since the main objective of this investigation is to study the lateral torsional 

buckling of tapered beams, the cross sections are selected to have height to thickness ratio 

sufficient, to prevent the local buckling. The taper ratio γ = [(dL-do)/do], (where dL and d0 are 

web depth at the large and small end of taper beam respectively) is varied as 0.0, 0.75, 1.5 

and 3.0 which covers majority of the practical situations. These results are compared with the 

Mcr equation of IS 800 (2007), as per clause 8.2.2 and also as per Annex E. 

 

 

RESULTS AND DISCUSSION 

 
(a) With reference to Figure 3, Figure 4 and Figure 5 for Section-I, it is observed that as 

the taper ratio increases from 0.0 to 3.0, there is drop in the nonlinear moment 

capacity of the tapered beam up to 65%. Whereas, as per IS 800 (2007), it is observed 

that as the taper ratio increases from 0.0 to 3.0 there is increase in the critical moment 

capacity of the beam by 80% (as per clause Annex E) and 100% (as per clause 8.2.2). 

 

(b) With reference to Figure 6, Figure 7 and Figure 8 for Section-II, it is observed that as 

the taper ratio increases from 0.00 to 3.00, there is a drop in the nonlinear moment 

capacity of the tapered beam up to 42%. Whereas, as per IS 800 (2007), it is observed 

that as the taper ratio increases from 0.00 to 3.00 there is increase in the critical 

moment capacity of the beam by 14% as per clause Annex E and 39% as per clause 

8.2.2 

 

(c) The drop in the nonlinear moment capacity is more dominant in Section type I as 

against of Section type II. That is as for section having thinner webs, there is more 

drop as compared to the thicker web. As the length of the beam reduces, the drop in 



the nonlinear moment capacity increases in both the type of sections i.e. Section-I and 

Section II. However, there is increase in the beam capacity as per IS800 (2007). 

 

 

                  

Figure 3   Nonlinear Moment Ratio (Mnl/Mnl0) vs. Taper Ratio γ for Various Lengths of 

Tapered Beams with Concentrated Load applied at the Center of Top Flange (Section- I) 

 

 

 

 

Figure 4   Elastic Critical Moment Ratio (Mcr’/Mcr’0) (As Per IS800 (2007) Clause 8.2.2) 

vs. Taper Ratio γ for Various Lengths of Tapered Beams with Concentrated Load applied 

at the Center of Top Flange (Section- I) 

 



 

 

Figure 5   Elastic Critical Moment Ratio (Mcre/Mcre’0) (As Per IS 800 (2007) Annex-E) vs. 

Taper Ratio γ for Various Lengths of Tapered Beams with Concentrated Load Applied at 

the Center of Top Flange (Section- I) 

 

 

     
 

Figure 6   Nonlinear Moment Ratio (Mnl/Mnl0) vs. Taper Ratio γ for Various Lengths of 

Tapered Beams with Concentrated Load Applied at the Center of Top Flange (Section- II) 



 
 

Figure 7   Elastic Critical Moment Ratio (Mcr’/Mcr’0) (As Per IS800 (2007) Clause 8.2.2) 

vs. Taper Ratio γ for Various Lengths of Tapered Beams with Concentrated Load Applied 

at the Center of Top Flange (Section- II) 

 

 

                           

 

Figure 8   Elastic Critical Moment Ratio (Mcre/Mcre’0) (As Per IS 800 (2007) Annex-E) vs. 

Taper Ratio γ for Various Lengths of Tapered Beams with Concentrated Load applied at 

the Center of Top Flange (Section- II) 



CONCLUSIONS 
 

From the numerical study performed, it is observed that as the taper ratio increases from 0.00 

(uniform beam) to 3.00 (tapered beam), there is a drop-in value of the critical load and critical 

moment. The influence of the taper ratio on the critical load of web-tapered I-beams is proven 

to be very significant and must be taken into account, when designing such members against 

buckling. Thus, effect of web tapering ratio on the LTB of web tapered beams needs 

consideration and hence, it is essential to find out a factor in the Mcr equation, which will 

consider the interactions of these parameters. With the inclusion of this factor, it will be 

ensured that the material is used to its fullest capacity by optimizing the steel quantity, 

considering all the influencing parameters and thus reducing the steel consumption and 

saving the natural resources for future. 
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